Weak-Compatible Mappings in Intuitionistic Fuzzy 3- Metric Spaces

Seema Mehra
Department of Mathematics, MDU, Rohtak
E-mail: sberwal2007@gmail.com

Abstract

In the present paper, our aim is to prove a common fixed point theorem for four mappings in intuitionistic fuzzy-3 metric space.

1. INTRODUCTION

In 1965, the concept of fuzzy sets was introduced by Zadeh [16]. Many authors have introduced the concept of fuzzy metric space in different ways
([3], [4], [7], [9]). George and Veeramani [4] modified the concept of fuzzy metric space introduced by Kramosil and Michalek [9] and defined a Hausdorff topology on this fuzzy metric space. Jungck [8] gave the more generalized concept compatibility than commutativity and weak commutativity in metric space and proved common fixed point theorems. Singh and Chauhan [14] introduced the concept of compatibility in fuzzy metric space and proved some common fixed point theorems in fuzzy metric spaces in the sense of George and Veeramani [4]. Park [11] using the idea of intuitionistic fuzzy sets, defined the notion of intuitionistic fuzzy metric spaces with the help of continuous t-norm and continuous t-conorm as a generalization of fuzzy metric space due to George and Veeramani [4].Recently, Chauhan and Singh[1] proved a fixed point theorem in intuitionistic fuzzy-3 metric space. The purpose of this paper is to prove a fixed point theorem in intuitionistic fuzzy- 3 metric space through weak compatibility.

2. PRELIMINARIES

Definition 1. A binary operation

* : $[0,1]^{4} \rightarrow[0,1]$ is called a continuous t-norm if $([0,1], *)$ is an Abelian topological monoid with the unit 1 such that $\mathrm{a}_{1} * \mathrm{~b}_{1}$ $* \mathrm{c}_{1} * \mathrm{~d}_{1} \leq \mathrm{a}_{2} * \mathrm{~b}_{2} * \mathrm{c}_{2} * \mathrm{~d}_{2}$ whenever $\mathrm{a}_{1} \leq \mathrm{a}_{2}, \mathrm{~b}_{1} \leq \mathrm{b}_{2}, \mathrm{c}_{1} \leq \mathrm{c}_{2}$ and
$\mathrm{d}_{1} \leq \mathrm{d}_{2}$ for all $\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{~b}_{1}, \mathrm{~b}_{2}, \mathrm{c}_{1}, \mathrm{c}_{2}$ and
$\mathrm{d}_{1}, \mathrm{~d}_{2} \in[0,1]$.
Definition 2. A binary operation
$\diamond:[0,1]^{4} \rightarrow[0,1]$ is called a continuous t-norm if $([0,1], \diamond)$ is an abelian topological monoid with the unit 1 such that
$\mathrm{a}_{1} \diamond \mathrm{~b}_{1} \diamond \mathrm{c}_{1} \diamond \mathrm{~d}_{1} \leq \mathrm{a}_{2} \diamond \mathrm{~b}_{2} \diamond \mathrm{c}_{2} \diamond \mathrm{~d}_{2}$ whenever $\mathrm{a}_{1} \leq \mathrm{a}_{2}, \mathrm{~b}_{1} \leq \mathrm{b}_{2}, \mathrm{c}_{1}$ $\leq \mathrm{c}_{2}$ and
$\mathrm{d}_{1} \leq \mathrm{d}_{2}$ for all $\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{~b}_{1}, \mathrm{~b}_{2}, \mathrm{c}_{1}, \mathrm{c}_{2}$ and
$\mathrm{d}_{1}, \mathrm{~d}_{2} \in[0,1]$.
Definition 3. A 5-tuple ($\mathrm{X}, \mathrm{M}, \mathrm{N}, *, \diamond$) is called a intuitionistic fuzzy 3-metric space if X is an arbitrary (non-empty) set, $*$ is a continuous t-norm, \diamond a continuous t -conorm and M, N are intuitionistic fuzzy sets on $X^{4} \times[0, \infty)$, satisfying the following conditions :for all $x, y, z u, v \in X$ and $t_{1}, t_{2}, t_{3}, t_{4}>0$
$\left(F M^{\prime}{ }^{\prime} 1\right) M(x, y, z, u, t)+N(x, y, z, u, t) \leq 1$
$\left(F M^{\prime}{ }^{\prime}-2\right) M(x, y, z, u, 0)=0$
$\left(F M^{\prime}{ }^{\prime}-3\right) M(x, y, z, u, t)=1$ for all $t>0$
when at least two of the three simplex
< $\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{u}>$ degenerate
$\left(\mathrm{FM}^{\prime}{ }^{\prime} 4\right) \mathrm{M}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{u}, \mathrm{t})=\mathrm{M}(\mathrm{x}, \mathrm{u}, \mathrm{z}, \mathrm{y}, \mathrm{t})$
$=\mathrm{M}(\mathrm{y}, \mathrm{z}, \mathrm{u}, \mathrm{x}, \mathrm{t})$
$=\mathrm{M}(\mathrm{z}, \mathrm{u}, \mathrm{x}, \mathrm{y}, \mathrm{t})=\cdots$,
(FM''5)M(x, y, z, u, $\left.t_{1}+t_{2}+t_{3}+t_{4}\right)$
$\geq \mathrm{M}\left(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{v}, \mathrm{t}_{1}\right) * \mathrm{M}\left(\mathrm{x}, \mathrm{y}, \mathrm{v}, \mathrm{u}, \mathrm{t}_{2}\right) *$
$M\left(x, v, z, u, t_{3}\right) * M\left(v, y, z, u, t_{4}\right)$,
$\left(\mathrm{FM}^{\prime}{ }^{\prime} 6\right) \mathrm{M}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{u}, \cdot):[0, \infty) \rightarrow[0,1)$
is left continuous
$\left(F^{\prime}{ }^{\prime}-7\right) \lim _{t \rightarrow \infty} \mathrm{M}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{u}, \mathrm{t})=1$ for
all $\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{u} \in \mathrm{X}$ and $\mathrm{t}>0$,
$\left(F M^{\prime \prime}-8\right) N(x, y, z, u, 0)=1$
$\left(F^{\prime \prime}-9\right) N(x, y, z, u, t)=0$ for all $t>0$
only when the three simplex $\langle\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{u}\rangle$
degenerate
(FM'' ${ }^{\prime}$ 10) $\quad N(x, y, z, u, t)=N(x, u, z, y, t)=N(y, z, u, x$, $\mathrm{t})=\mathrm{N}(\mathrm{z}, \mathrm{u}, \mathrm{x}, \mathrm{y}, \mathrm{t})=\cdots$,
$\left(F M^{\prime}{ }^{\prime}-11\right) N\left(x, y, z, u, t_{1}+t_{2}+t_{3}+t_{4}\right)$
$\leq \mathrm{N}\left(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{v}, \mathrm{t}_{1}\right) \diamond \mathrm{N}\left(\mathrm{x}, \mathrm{y}, \mathrm{v}, \mathrm{u}, \mathrm{t}_{2}\right) \diamond$
$N\left(x, v, z, u, t_{3}\right) \diamond N\left(v, y, z, u, t_{r}\right)$,
$\left(\mathrm{FM}^{\prime}{ }^{\prime}-12\right) \mathrm{N}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{u}, \cdot):[0, \infty) \rightarrow[0,1]$ is right continuous,
$(F M ',-13) \lim _{t \rightarrow \infty} N(x, y, z, u, t)=1$ for all $x, y, z, u \in X$ and t >0.

Definition 4. Let (X, M, N, *, $)$ be an intuitionistic fuzzy 3metric space.
(a) A sequence $\left\{x_{n}\right\}$ in X is said to be convergent to a point $x \in X$ if
$\lim _{n \rightarrow \infty} \mathrm{M}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}, \mathrm{a}, \mathrm{b}, \mathrm{t}\right)=1$,
and $\lim _{n \rightarrow \infty} n\left(x_{n}, x, a, b, t\right)=0$ for all $a, b \in X$ with $t>0$.
A sequence $\left\{x_{n}\right\}$ in X is called Cauchy sequence if $\lim _{n \rightarrow \infty}$ $\mathrm{M}\left(\mathrm{x}_{\mathrm{n}+\mathrm{m}}, \mathrm{x}_{\mathrm{n}}, \mathrm{a}, \mathrm{b}, \mathrm{t}\right)=1, \lim _{\mathrm{n} \rightarrow \infty} \mathrm{n}\left(\mathrm{x}_{\mathrm{n}+\mathrm{m}}, \mathrm{x}_{\mathrm{n}}, \mathrm{a}, \mathrm{b}, \mathrm{t}\right)=0$ for all a , $b \in X$,
$\mathrm{t}>0$.
(b) An intuitionistic fuzzy 3-metric space in which every Cauchy sequence is convergent is said to be complete.
Definition5. Two maps A and B from an intuitionistic fuzzy 3-metric space
($\mathrm{X}, \mathrm{M}, \mathrm{N}, *, \diamond$) into itself are said to be compatible if
$\lim _{n \rightarrow \infty} M\left(A B x_{n}, B A x_{n}, a, b, t\right)=1$,
$\lim _{n \rightarrow \infty} N\left(A B x_{n}, B A x_{n}, a, b, t\right)=0$
for all $a, b \in X$ and $t>0$, whenever $\left\{x_{n}\right\}$ is a sequence in X such that
$\lim _{n \rightarrow \infty} \mathrm{Ax}_{\mathrm{n}}=\lim _{\mathrm{n} \rightarrow \infty} \mathrm{Bx}_{\mathrm{n}}=\mathrm{x} \in \mathrm{X}$.
Lemma1. In a intuitionistic fuzzy 3-metric space ($\mathrm{X}, \mathrm{M}, \mathrm{N}, *$, \diamond) for all $x, y, z \in X, M(x, y, \cdot), N(x, y, \cdot)$ are non-decreasing and non-increasing functions respectively.
Remark1. Since $*, \diamond$ are continuous, it follows from (FM5, FM11) that the limit of a sequence in an intuitionistic fuzzy metric 3-space is unique.

Definition 6. Self- mappings A and B of an intuitionistic fuzzy metric space
$(\mathrm{X}, \mathrm{M}, \mathrm{N}, *, \diamond)$ is said to be weakly compatible if $\mathrm{ABx}=\mathrm{BAx}$ when $A x=B x$ for some $x \in X$.

3. MAIN RESULT

Theorem: Let A, B, S and T be self-maps of a intuitionistic fuzzy 3-metric space $(X, M, N, *, \diamond)$ satisfying
$\mathrm{A}(\mathrm{X}) \subset \mathrm{T}(\mathrm{X})$ and $\mathrm{B}(\mathrm{X}) \subset \mathrm{S}(\mathrm{X})$
$\mathrm{M}(\mathrm{Ax}, \mathrm{By}, \mathrm{a}, \mathrm{b}, \mathrm{t}) \geq \mathrm{r}(\mathrm{M}(\mathrm{Sx}, \mathrm{Ty}, \mathrm{a}, \mathrm{b}, \mathrm{t}))$,
$\mathrm{N}(A x, B y, a, b, t) \leq r^{\prime}(N(S x, T y, a, b, t))$
For all $x, y, a, b \in X$, where
$\mathrm{r}:[0,1] \rightarrow[0,1]$ and $\mathrm{r}^{\prime}:[0,1] \rightarrow[0,1]$ is a continuous function such that $r(t)>t$ and $r^{\prime}(t)<t$ for each $0<t<1$.
Suppose that one of $T(X)$ and $S(X)$ is a complete subspace of X and the pairs
(A, S) and (B, T) are weakly compatible. Then, A, B, S and T have a unique common fixed point in X .
Proof. Let x_{0} be an arbitrary point in X by (1) we can define inductively a sequence $\left\{y_{n}\right\}$ in X such that
$\mathrm{y}_{2 \mathrm{n}}=\mathrm{Ax}_{2 \mathrm{n}}=\mathrm{Tx}_{2 \mathrm{n}+1}$ and
$\mathrm{y}_{2 \mathrm{n}+1}=\mathrm{Sx}_{2 \mathrm{n}+2}=\mathrm{Bx}_{2 \mathrm{n}+1}$
for $\mathrm{n}=0,1,2, \ldots$.
Using in (2) we have
$\mathrm{M}\left(\mathrm{y}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}+1}, \mathrm{a}, \mathrm{b}, \mathrm{t}\right)$
$=r\left(M\left(A x_{2 n}, B x_{2 n+1}, a, b, t\right)\right)$
$\geq r\left(M\left(\mathrm{Sx}_{2 \mathrm{n}}, \mathrm{Tx}_{2 \mathrm{n}+1}, \mathrm{a}, \mathrm{b}, \mathrm{t}\right)\right)$,
$=r\left(M\left(y_{2 n-1}, y_{2 n}, a, b, t\right)\right)$
$\left.>\mathrm{M}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}}, \mathrm{a}, \mathrm{b}, \mathrm{t}\right)\right)$,
$N\left(y_{2 n}, y_{2 n+1}, a, b, t\right)=r^{\prime}\left(N\left(A x_{2 n}, B x_{2 n+1}, a, b, t\right)\right) \leq r^{\prime}\left(N\left(S x_{2 n}, T x_{2 n+1}\right.\right.$, $\mathrm{a}, \mathrm{b}, \mathrm{t})$),
$=\mathrm{r}^{\prime}\left(\mathrm{N}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}}, \mathrm{a}, \mathrm{b}, \mathrm{t}\right)\right)$
$<\mathrm{N}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}}, \mathrm{a}, \mathrm{b}, \mathrm{t}\right)$).
Similarly,
$\left.\mathrm{M}\left(\mathrm{y}_{2 \mathrm{n}+1}, \mathrm{y}_{2 \mathrm{n}+2}, \mathrm{a}, \mathrm{b}, \mathrm{t}\right)>\mathrm{M}\left(\mathrm{y}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}+1}, \mathrm{a}, \mathrm{b}, \mathrm{t}\right)\right)$,
$\left.N\left(y_{2 n+1}, y_{2 n+2}, a, b, t\right)<N\left(y_{2 n}, y_{2 n+1}, a, b, t\right)\right)$.
Then
$\left.M\left(y_{n}, y_{n+1}, a, b, t\right)>M\left(y_{n-1}, y_{n}, a, b, t\right)\right)$,
$\left.\mathrm{N}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}+1}, a, b, t\right)<\mathrm{N}\left(\mathrm{y}_{\mathrm{n}-1}, \mathrm{y}_{\mathrm{n}}, a, b, t\right)\right)$
Hence the sequence $\left\{\mathrm{M}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}+1}, \mathrm{a}, \mathrm{b}, \mathrm{t}\right)\right\}$ is an increasing sequence of positive real numbers in $[0,1]$ and tends to a limit $\ell \geq 1$ and $\left\{\mathrm{N}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}+1}, \mathrm{a}, \mathrm{b}, \mathrm{t}\right)\right\}$ is an decreasing sequence of positive real numbers in $[0,1]$ and tends to a limit $\ell \leq 1$. If $\ell<$ 1 , then
$\lim _{n \rightarrow \infty} M\left(y_{n+1}, y_{n}, a, b, t\right)=1>r(\ell)>1, \lim _{n \rightarrow \infty} N\left(y_{n+1}, y_{n}, a, b\right.$, $\mathrm{t})=1<\mathrm{r}^{\prime}(\ell)<1$
which is a contradiction. So, $\ell=1$ and
$\ell=0$ respt.
Now, for any positive integer p
$\mathrm{M}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}+\mathrm{p}}, \mathrm{a}, \mathrm{b}, \mathrm{t}\right) \geq \mathrm{M}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}+1}, a, b, \mathrm{t} / \mathrm{p}\right) *$
$\mathrm{M}\left(\mathrm{y}_{\mathrm{n}+1}, \mathrm{y}_{\mathrm{n}+2}, \mathrm{a}, \mathrm{b}, \mathrm{t} / \mathrm{p}\right) * \ldots *$
$\mathrm{M}\left(\mathrm{y}_{\mathrm{n}+\mathrm{p}-1}, \mathrm{y}_{\mathrm{n}+\mathrm{p}}, \mathrm{a}, \mathrm{b}, \mathrm{t} / \mathrm{p}\right)$,
$N\left(y_{n}, y_{n+p}, a, b, t\right) \leq N\left(y_{n}, y_{n+1}, a, b, t / p\right) \diamond$
$N\left(y_{n+1}, y_{n+2}, a, b, t / p\right) \diamond \ldots \diamond$
$\mathrm{N}\left(\mathrm{y}_{\mathrm{n}+\mathrm{p}-1}, \mathrm{y}_{\mathrm{n}+\mathrm{p}}, \mathrm{a}, \mathrm{b}, \mathrm{t} / \mathrm{p}\right)$
Taking the limit as $\mathrm{n} \rightarrow \infty$ we get,
$\lim _{\mathrm{n} \rightarrow \infty} \mathrm{M}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}+\mathrm{p}}, \mathrm{a}, \mathrm{b}, \mathrm{t}\right) \geq 1 * 1 * \ldots * 1=1$.
$\lim _{\mathrm{n} \rightarrow \infty} \mathrm{N}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}+\mathrm{p}}, \mathrm{a}, \mathrm{b}, \mathrm{t}\right) \leq 0 \diamond 0 \diamond \ldots \diamond 0=0$.
So,
$\lim _{n \rightarrow \infty} \mathrm{M}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}+\mathrm{p}}, \mathrm{a}, \mathrm{b}, \mathrm{t}\right)=1$,
$\lim _{n \rightarrow \infty} N\left(y_{n}, y_{n+p}, a, b, t\right)=0$.
Therefore, $\left\{y_{n}\right\}$ is a Cauchy sequence in X. Then, the subsequence
$\left\{\mathrm{y}_{2 \mathrm{n}}\right\}=\left\{\mathrm{Tx}_{2 \mathrm{n}+1}\right\} \subset \mathrm{T}(\mathrm{X})$ is a Cauchy sequence in $\mathrm{T}(\mathrm{X})$. Suppose that $T(X)$ is complete. So $\left\{y_{2 n}\right\}$ converges to a point
$z=T v$ for some $v \in X$. Hence, the sequence $\left\{y_{n}\right\}$ converges also to z and the subsequences $\left\{\mathrm{Ax}_{2 \mathrm{n}}\right\}$, $\left\{\mathrm{Bx}_{2 \mathrm{n}+1}\right\},\left\{\mathrm{Sx}_{2 \mathrm{n}+2}\right\}$ and $\left\{\mathrm{Tx}_{2 \mathrm{n}+1}\right\}$ converge to z .
If $z \neq B v$, using (2) we get
$\mathrm{M}\left(\mathrm{Ax}_{2 \mathrm{n}}, \mathrm{Bv}, \mathrm{a}, \mathrm{b}, \mathrm{t}\right) \geq \mathrm{r}\left(\mathrm{M}\left(\mathrm{Sx}_{2 \mathrm{n}}, \mathrm{Tv}, \mathrm{a}, \mathrm{b}, \mathrm{t}\right)\right)$,
$\mathrm{N}\left(\mathrm{Ax}_{2 \mathrm{n}}, \mathrm{Bv}, \mathrm{a}, \mathrm{b}, \mathrm{t}\right) \leq \mathrm{r}^{\prime}\left(\mathrm{N}\left(\mathrm{Sx}_{2 \mathrm{n}}, T v, a, b, t\right)\right)$.
Letting $\mathrm{n} \rightarrow \infty$ we obtain
$\mathrm{M}(\mathrm{z}, \mathrm{Bv}, \mathrm{a}, \mathrm{b}, \mathrm{t}) \geq \mathrm{r}(\mathrm{M}(\mathrm{z}, \mathrm{z}, \mathrm{a}, \mathrm{b}, \mathrm{t}))=\mathrm{r}(1)=1$,
$\mathrm{N}(\mathrm{z}, \mathrm{Bv}, \mathrm{a}, \mathrm{b}, \mathrm{t}) \leq \mathrm{r}^{\prime}(\mathrm{N}(\mathrm{z}, \mathrm{z}, \mathrm{a}, \mathrm{b}, \mathrm{t}))=\mathrm{r}(0)=0$.
Therefore, $z=B v=T v$. Since
$B(X) \subset S(X)$, there exists $u \in X$ such that $B v=S u=z$. If $z \neq$ Au , using (2) we get
$\mathrm{M}(\mathrm{Au}, \mathrm{Bv}, \mathrm{a}, \mathrm{b}, \mathrm{t}) \geq \mathrm{r}(\mathrm{M}(\mathrm{Su}, \mathrm{Tv}, \mathrm{a}, \mathrm{b}, \mathrm{t}))$,
$\mathrm{N}(\mathrm{Au}, \mathrm{Bv}, \mathrm{a}, \mathrm{b}, \mathrm{t}) \leq \mathrm{r}^{\prime}(\mathrm{N}(\mathrm{Su}, \mathrm{Tv}, \mathrm{a}, \mathrm{b}, \mathrm{t}))$.
Then,
$\mathrm{M}(\mathrm{Au}, \mathrm{z}, \mathrm{a}, \mathrm{b}, \mathrm{t}) \geq \mathrm{r}(\mathrm{M}(\mathrm{z}, \mathrm{z}, \mathrm{a}, \mathrm{b}, \mathrm{t}))=1$,
$\mathrm{N}(\mathrm{Au}, \mathrm{z}, \mathrm{a}, \mathrm{b}, \mathrm{t}) \leq \mathrm{r}^{\prime}(\mathrm{N}(\mathrm{z}, \mathrm{z}, \mathrm{a}, \mathrm{b}, \mathrm{t}))=0$.
Therefore, $\mathrm{z}=\mathrm{au}=\mathrm{Su}$. Since the pair
$\{A, S\}$ is compatible we have $\mathrm{SAu}=\mathrm{ASu}$, i.e., $\mathrm{Az}=\mathrm{Sz}$. If $\mathrm{z} \neq$ Az, using (2) we have
$\mathrm{M}(\mathrm{Az}, \mathrm{Bv}, \mathrm{a}, \mathrm{b}, \mathrm{t}) \geq \mathrm{r}(\mathrm{M}(\mathrm{Sz}, \mathrm{Tv}, \mathrm{a}, \mathrm{b}, \mathrm{t}))=\mathrm{r}(\mathrm{M}(\mathrm{Az}, \mathrm{z}, \mathrm{a}, \mathrm{b}, \mathrm{t}))>$ $\mathrm{M}(\mathrm{Az}, \mathrm{z}, \mathrm{a}, \mathrm{b}, \mathrm{t})$,
$\mathrm{N}(\mathrm{Az}, \mathrm{Bv}, \mathrm{a}, \mathrm{b}, \mathrm{t}) \leq \mathrm{r}^{\prime}(\mathrm{N}(\mathrm{Sz}, \mathrm{Tv}, \mathrm{a}, \mathrm{b}, \mathrm{t}))=\mathrm{r}^{\prime}(\mathrm{N}(\mathrm{Az}, \mathrm{z}, \mathrm{a}, \mathrm{b}, \mathrm{t}))<\mathrm{N}(\mathrm{Az}$, $\mathrm{z}, \mathrm{a}, \mathrm{b}, \mathrm{t})$
which is a contradiction. $\mathrm{So}, \mathrm{z}=\mathrm{Az}=\mathrm{Sz}$. If $\mathrm{z} \neq \mathrm{Bz}$, using (3.5) we get
$\mathrm{M}(\mathrm{Az}, \mathrm{Bz}, \mathrm{a}, \mathrm{b}, \mathrm{t}) \geq \mathrm{r}(\mathrm{M}(\mathrm{Sz}, \mathrm{Tz}, \mathrm{a}, \mathrm{b}, \mathrm{t}))$,
$\mathrm{N}(\mathrm{Az}, \mathrm{Bz}, \mathrm{a}, \mathrm{b}, \mathrm{t}) \leq \mathrm{r}^{\prime}(\mathrm{N}(\mathrm{Sz}, \mathrm{Tz}, \mathrm{a}, \mathrm{b}, \mathrm{t}))$.
Then,
$\mathrm{M}(\mathrm{z}, \mathrm{Bz}, \mathrm{a}, \mathrm{b}, \mathrm{t})=\mathrm{r}(\mathrm{M}(\mathrm{z}, \mathrm{B} z, \mathrm{a}, \mathrm{b}, \mathrm{t}))$
$>\mathrm{M}(\mathrm{z}, \mathrm{Bz}, \mathrm{a}, \mathrm{b}, \mathrm{t})$,
$\mathrm{N}(\mathrm{z}, \mathrm{Bz}, \mathrm{a}, \mathrm{b}, \mathrm{t})=\mathrm{r}^{\prime}(\mathrm{N}(\mathrm{z}, \mathrm{Bz}, \mathrm{a}, \mathrm{b}, \mathrm{t}))$
$<\mathrm{N}(\mathrm{z}, \mathrm{Bz}, \mathrm{a}, \mathrm{b}, \mathrm{t})$
Therefore, $z=a u=S u$. Since the pair
$\{A, S\}$ is compatible we have $S A u=A S u$, i.e., $A z=S z$. If $z \neq$ Az, using (2) we have
$\mathrm{M}(\mathrm{Az}, \mathrm{Bv}, \mathrm{a}, \mathrm{b}, \mathrm{t}) \geq \mathrm{r}(\mathrm{M}(\mathrm{Sz}, \mathrm{Tv}, \mathrm{a}, \mathrm{b}, \mathrm{t}))$
$=\mathrm{r}(\mathrm{M}(\mathrm{Sz}, \mathrm{z}, \mathrm{a}, \mathrm{b}, \mathrm{t}))>\mathrm{M}(\mathrm{Az}, \mathrm{z}, \mathrm{a}, \mathrm{b}, \mathrm{t})$,
$\mathrm{N}(\mathrm{Az}, \mathrm{Bv}, \mathrm{a}, \mathrm{b}, \mathrm{t}) \leq \mathrm{r}^{\prime}(\mathrm{N}(\mathrm{Sz}, \mathrm{Tv}, \mathrm{a}, \mathrm{b}, \mathrm{t}))$
$=r^{\prime}(\mathrm{N}(\mathrm{Az}, \mathrm{z}, \mathrm{a}, \mathrm{b}, \mathrm{t}))<\mathrm{N}(\mathrm{Az}, \mathrm{z}, \mathrm{a}, \mathrm{b}, \mathrm{t})$
which is a contradiction. $\mathrm{So}, \mathrm{z}=\mathrm{Az}=\mathrm{Sz}$. If $\mathrm{z} \neq \mathrm{Bz}$, using (3.5) we get
$\mathrm{M}(\mathrm{Az}, \mathrm{Bz}, \mathrm{a}, \mathrm{b}, \mathrm{t}) \geq \mathrm{r}(\mathrm{M}(\mathrm{Sz}, \mathrm{Tz}, \mathrm{a}, \mathrm{b}, \mathrm{t}))$,
$\mathrm{N}(\mathrm{Az}, \mathrm{Bz}, \mathrm{a}, \mathrm{b}, \mathrm{t}) \leq \mathrm{r}^{\prime}(\mathrm{N}(\mathrm{Sz}, \mathrm{Tz}, \mathrm{a}, \mathrm{b}, \mathrm{t}))$.
Then,
$\mathrm{M}(\mathrm{z}, \mathrm{B} z, \mathrm{a}, \mathrm{b}, \mathrm{t})=\mathrm{r}(\mathrm{M}(\mathrm{z}, \mathrm{B} z, \mathrm{a}, \mathrm{b}, \mathrm{t}))$
$>\mathrm{M}(\mathrm{z}, \mathrm{Bz}, \mathrm{a}, \mathrm{b}, \mathrm{t})$;
$\mathrm{N}(\mathrm{z}, \mathrm{Bz}, \mathrm{a}, \mathrm{b}, \mathrm{t})=\mathrm{r}^{\prime}(\mathrm{N}(\mathrm{z}, \mathrm{Bz}, \mathrm{a}, \mathrm{b}, \mathrm{t}))$
$<\mathrm{N}(\mathrm{z}, \mathrm{Bz}, \mathrm{a}, \mathrm{b}, \mathrm{t})$
which is a contradiction.
Hence, $\mathrm{z}=\mathrm{Bz}=\mathrm{Tz}$. Therefore, z is a common fixed point of $\mathrm{A}, \mathrm{B}, \mathrm{S}$ and T . The uniqueness of z follows from (2).

REFERENCES

[1] Chauhan and Singh. Fixed point in intuitionistic fuzzy-3 metric space.Int.J.Engg and Techo.Vol. 3
[2] (2), 2011, 144-150.
[3] Cho, S.H., Jung, J.H., "On common fixed point theorems in fuzzy metric spaces", International Mathematical Forum, Vol 1, No. 29, (2006), pp.1441-1451.
[4] Erceg, M.A., "Metric spaces in fuzzy set theory", J. Math. Anal. Appl., Vol 69, (1979), pp. 205-230.
[5] George, A., Veeramani, P., "On some results in fuzzy metirc spaces", Fuzzy Sets and Systems, Vol 64, (1994), pp. 395-399.
[6] George, A., Veeramani, P., "On some results of analysis for fuzzy metric Spaces", Fuzzy Sets and Systems, Vol 90, (1997), pp. 365-368.
[7] Grabiec, M., "Fixed point in fuzzy metric spaces", Fuzzy Sets and Systems, Vol 27, (1988), pp.385-389.
[8] Greogori, V., Romoguera, S., "On completion of fuzzy metric spaces", Fuzzy Sets and Systems, Vol 130, (2002), pp. 399-404.
[9] Jungck, G., "Compatible mappings and fixed points", Internat. J. Math. Math. Sci., Vol 9, No. 4(1986), pp. 771-779.
[10] Kramosil, O., Michalek, J., "Fuzzy metric and statistical metric spaces", Kybernetica, Vol 11, (1975), pp. 326-334.
[11] Mukherjee, R.N., "On some fixed point theorems", Kyungpook Math. J., Vol 14, (1974), pp. 37-44.
[12] Park, J.H., "Intuitionistic fuzzy metric spaces", Chaos, Solitons and Fractals, Vol 22, (2004), pp. 1039-1046.
[13] Park, J. S., Kim, S.Y., "A fixed point theorem in a fuzzy metric space", Far East J. Math. Sci. (FJMS), Vol 1, No. 6, (1999), pp. 927-934.
[14] Schweizer, B., Sklar, A., "Probabilistic Metric Spaces", NorthHolland, New York, Oxford, 1983.
[15] Singh, B., Chauhan, M.S., "Common fixed points of compatible maps in fuzzy metric spaces", Fuzzy Sets and Systems, Vol 115, (2000), pp. 471-475.
[16] Vijayaraju, P., Marudai, M., "Fixed point theorems in fuzzy metric spaces", J. Fuzzy Math., Vol 8, No. 2, (2000), pp. 867871.
[17] Zadeh, L.A., "Fuzzy sets", Inform. and Control, Vol 8(1965), pp. 338-353.

